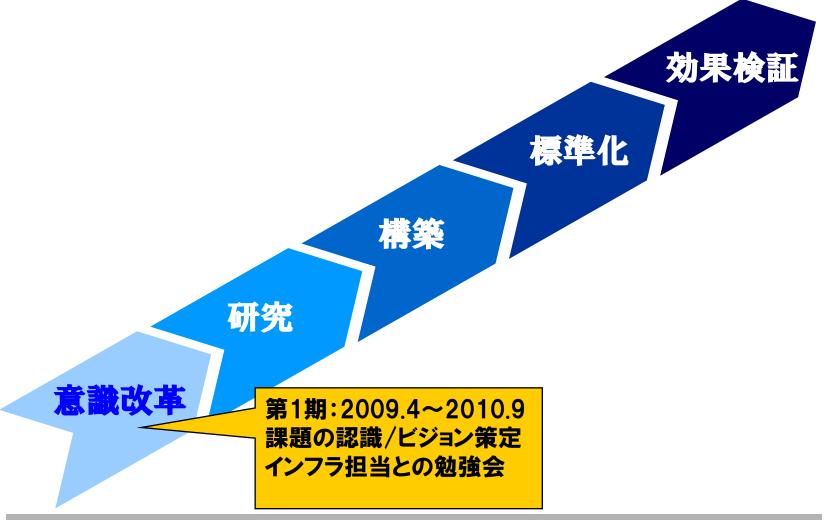

JTBデータセンター革新 クラウド時代に対応できる自社DC

-【 東京都 省エネセミナー(事例紹介:データセンター編)]-


2013年7月2日、5日 株式会社 JTB情報システム 基盤システム部マネージャー 程田 悦由

■本日のアジェンダ

- JTBのこれまでの取組み ~ 革新への道のり
- JTBデータセンタファシリティ概要
- ◆ クラウド環境に適したファシリティ構築(<u>構築事例</u>)
- ・ データセンターアセスメントと省エネルギー
- まとめ

■ JTBデータセンター革新への道のり

第1期:意識改革・整理フェーズ

(2009.4~2010.9)

• きっかけ

誇れるデータセンターにしたい!

■課題と意識改革

課題

- > ファシリティ(物理インフラ)の重要さの認識欠如
- > サーバの向きがばらばら
- ▶ サーバメーカ毎にメーカー独自のラックを導入
- > 可燃物(ダンボール等)不要物が山積み
- > サーバ設置基準などルールが無い

まずはインフラ担当者の意識改革が必要

* JTBデータセンター革新への道のり

第4期:2010.11~2011.3

ファシリティ設計書標準化

DC運用規定の策定

効果検証

標準化

第2期:2010.1~2010.7

商用DC視察

DCアセスメント研究

構築

第5期:2011.4~2011.12

DCアセスメント実施

チューニング対応

DCアセスメント効果検証

研究

意識改革

第3期:2010.8~2010.10

プライベートクラウド

ファシリティ設計・構築

第1期:2009.4~2010.9

課題の認識/ビジョン策定

©2013 JTB インフラ担当との勉強会 感動のそばに、いつも。

■JTBデータセンターファシリティ概要

Tierとは

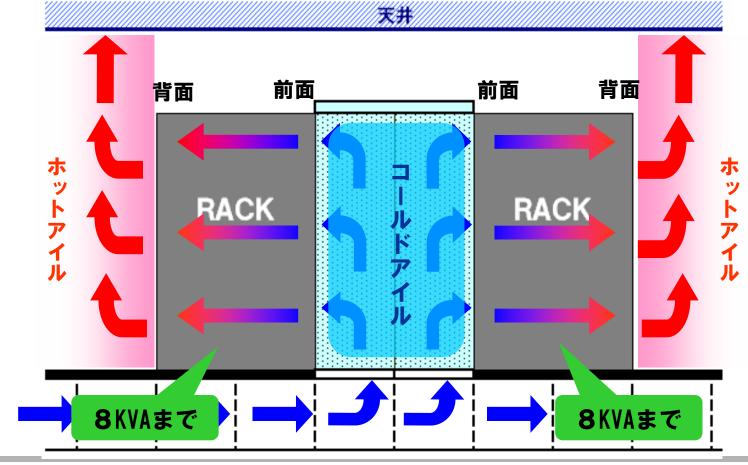
米国のデータセンターに関する問題を研究してきた、アップタイム・インスティテュート (The Uptime Institute, Inc.) が定めたデータセンターの品質評価基準。Tierl(最低)~TierlV(最高)までの4段階が規定されている。評価の基準として、供給される電力経路、自家発電機の運転時間、電源容量やUPSの有無、空調設備の状況などがある。

Tierの考え万						
Tier1	発電機なし 又は、オプション	LANルーム用基本UPS/冗長	JTBのDCはTier3 クオリティの高いDC			
Tier2	発電機	N+1 UPS(冗長性有り)	が供稿 _弱システム	99.741%		
Tier3	N+1 発電システム	N+1 UPS(冗長性有り)	常用1、代替1の電力供給、 N+1空調システム	99.982%		
Tier4	2N 発電システム	2N UPSシステム	常用2系統の電力供給、 2N空調システム、 コンパートメント化	99.995%		

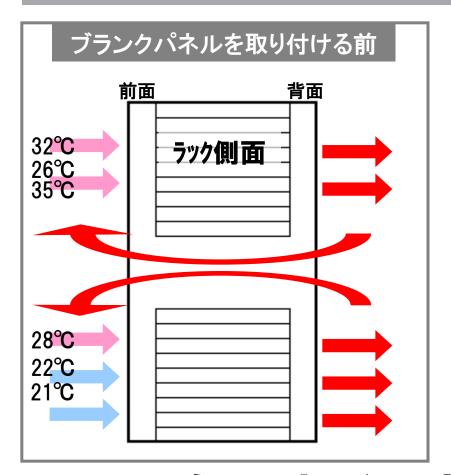
■ クラウド環境に適したファシリティ構築(課題)

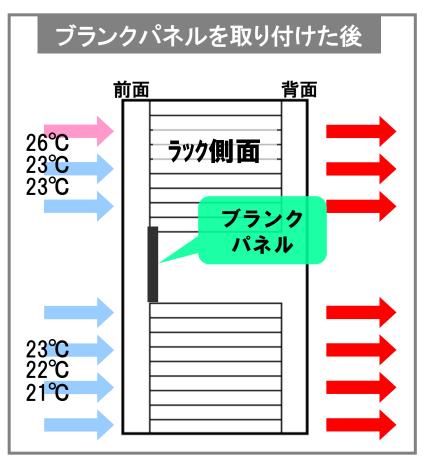
課題解決するためには

最適なベストプラクティスの考案 アセスメントにより的確な診断

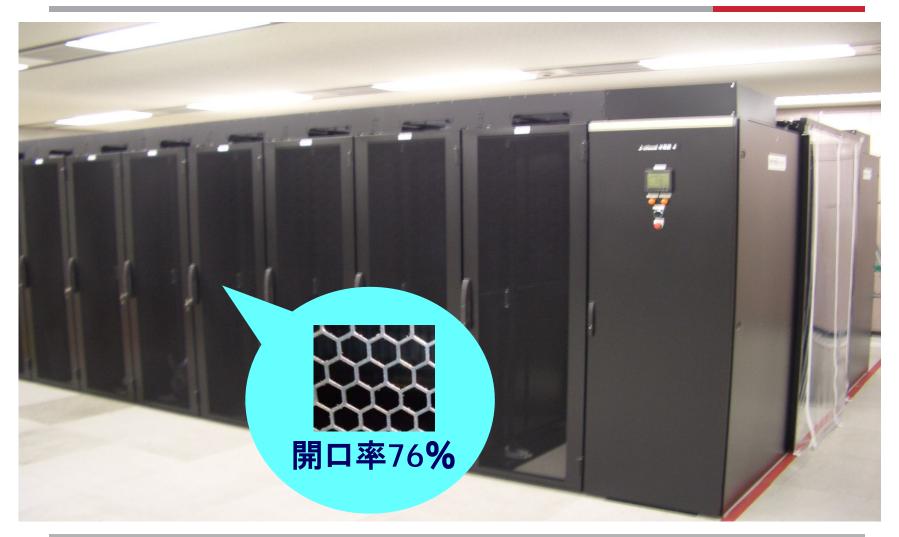


エネルギー効率UP コスト削減


■コールドアイルキャッピングをする効果


6KVA→8KVAまでラックあたりの電力増を可能にする。

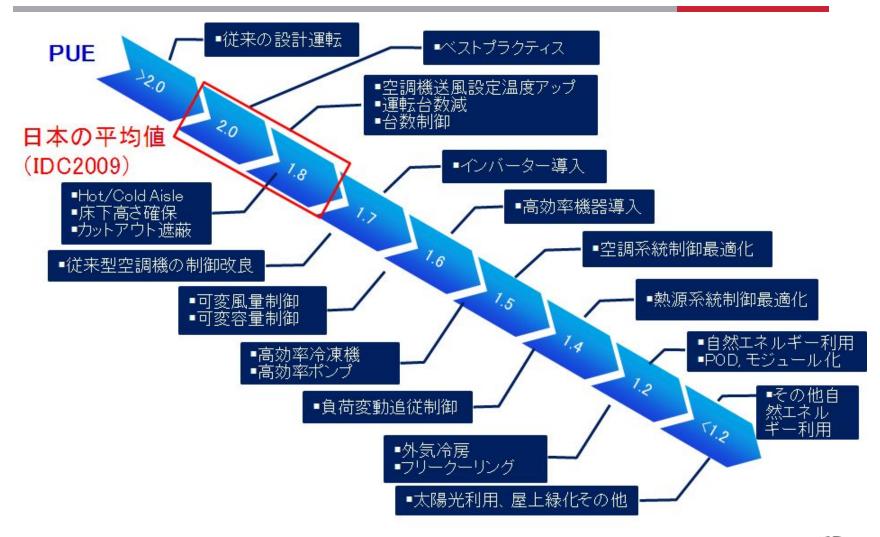
■ ブランクパネルの効果



吸気温度が最大12℃低下する

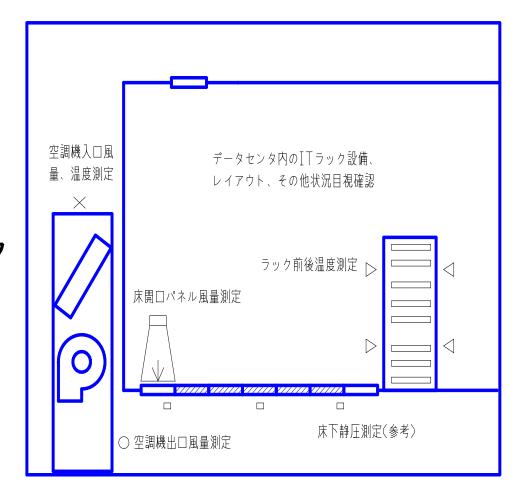
JTBファシリティ構築事例

■PUE 年間データ 2010年3月~2011年2月


kW kW kW kW 【エネルギー効率の指標】 kW kW kW kW kW kW DC全体の消費電力 kW PUF =IT機器による消費電力 日本の 平均PUE

©2013 JTB System Solution, INC.

感動のそばに、いつも。

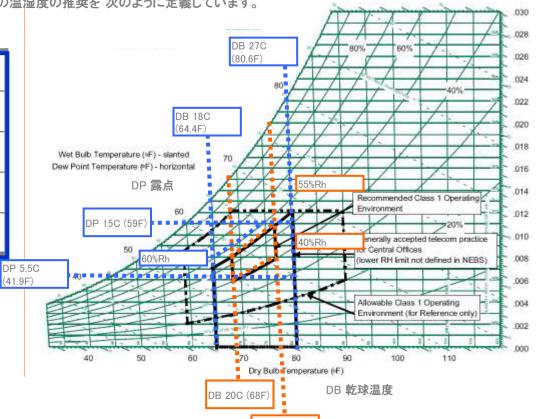


■ PUE低減ロードマップ

■データセンター環境調査の内容

- ラック吸気、排気温度の測定
- 床開口パネルの風量測定
- 空調機出入口温度、風量測定
- 床下静圧測定(参考)
- データセンタレイアウト、ITラック 設備、その他状況の目視確認
- ラック前後の温度測定

■データセンターの温湿度環境 ASHRAE


American Society of Heating, Refrigerating and Air-Conditioning Engineers 米国暖房冷凍空調学会

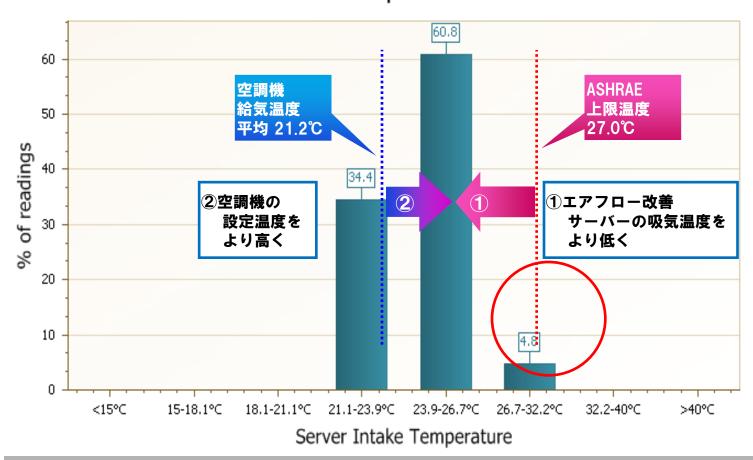
Technical Committee 9.9

- Mission Critical Facilities, Technology Spaces and Electronic Equipment

一般的なデータセンターにおける IT機器の給気部での温湿度の推奨を 次のように定義しています。

	2004年版	2008年版		
最高温度	25°C	27°C		
最低温度	20°C	18°C		
最高湿度	55%Rh	露点 15℃ かつ 60%Rh		
最低湿度	40%Rh	露点 5.5℃		

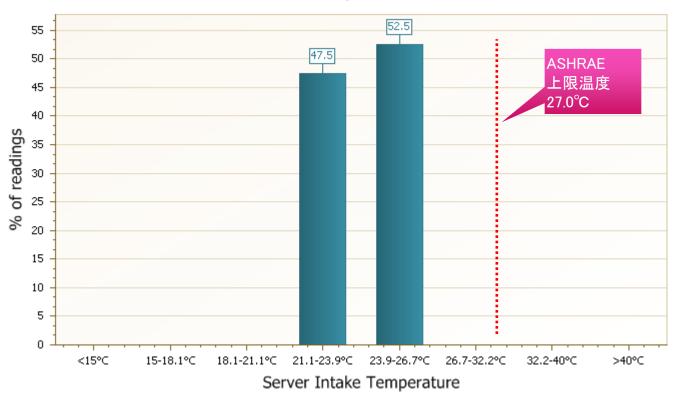
DB 25C (77F)



http://tc99.ashraetcs.org/

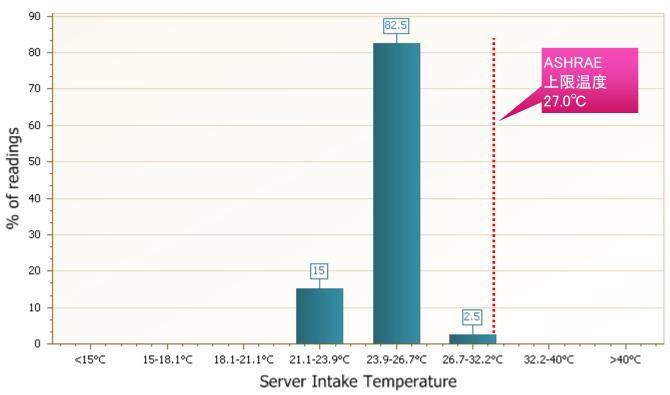
%Rh 相対湿度

■ アセスメント時 1F サーバー吸気温度


最低 22.0 ℃ 平均 24.5 ℃ 最高 30.5 ℃ 1F Server Intake Temperature Distribution

■エアフロー改善後 1F サーバー吸気温度

JTB FORESTA 西館


最低 22.5 ℃ 平均 23.9 ℃ 最高 25.6 ℃ 1F Server Intake Temperature Distribution

■ 空調設定上昇後 1F サーバー吸気温度

JTB FORESTA 西館

最低 23.1 ℃ 平均 24.7 ℃ 最高 26.8 ℃ 1F Server Intake Temperature Distribution

■空調設定上昇後 2F サーバー吸気温度

JT

チューニング実施内容&結果フロアパネル再配置250枚

- ①空調機6台停止
- ②DC室内1℃以上温度上昇

PUE=6%以上改善

エネルギー効率化のまとめ

- データセンターの効率化をするには単に電力 消費量だけを管理していれば済むわけではなく、 複合的に多数の条件をバランスよく維持する必 要があります。
- トレードオフはいたるところにあり、ショートカット (近道)はコスト増につながる。
- 最適なバランスポイントを見つけるためには近 道はなく、地道な検討を繰り返すしかない。